

Binogi Video: The Pythagorean theorem English-Mandarin Bilingual Concept List <u>The Escape Projects</u>

II	M) L	5
Hypotenuse The longest side of a right-angled triangle.	斜边 直角三角形的最长边。	Hypotenuse
Irrational number A number that cannot be written as a fraction and when written as a decimal number, it has an infinite number of decimal digits that do not repeat.	无理数 一种无法用分数表达的数字,当用小 数表达时,其为无限不循环小数。	Bonus $1 \int_{1}^{1} C = \sqrt{2}$
Exponential expression A term that is made up of a number and a smaller number in the top right corner. The small number tells you how many times to multiply the larger number by itself.	指数表达 由一个数字和其右上角相对较小的数 字够成的术语。较小数字代表了较大 数字需要自乘几次。	$c^{2} = \frac{1}{2} + \frac{1}{2}$ $c^{2} = \frac{1}{2} + \frac{1}{2}$ $c^{2} = \frac{1}{25} + \frac{1}{44}$ $c^{2} = \frac{1}{12}$ $c^{2} = \frac{1}{12}$
Square root The number you should multiply by itself to find the number you have in front of you.	平方根 通过自乘得出相应平方进而反推得来 的数字。	$c^{2} = \vec{a} + \vec{b} \qquad \sqrt{c^{2}} = \sqrt{169}$ $c^{2} = 5^{2} + 12^{2}$ $c^{2} = 25 + 144$ $c^{2} = 169$ $5 \qquad 12$
Pythagorean theorem In a right-angled triangle, the square of the longest side equals the sum of the squares of the two shorter sides.	勾股定理 在直角三角形中,最长边的平方等于 短边的平方之和。	Pythagorean theorem
Isolate To separate one term (usually an unknown term) from the other terms in an equation, by placing it on one side of an equation.	分离 通过将方程中的某项移到方程一侧的 方式,将其与其他项分开。	Summary The forthagerisin theorem is $c^2 = a^2 + b^2$ b^2 b

-

